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ABSTRACT

Chemical synthesis of compounds
and materials are typically improved
by understanding a reaction’s
mechanism and its kinetics. Many
tools have been developed for
performing these studies for solution
and gas-phase chemistry. Solid-state chemistry presents a
challenge, as reactions can be rapid and highly exothermic.
Such chemistry 1s often used for the production of high
performance ceramics. Optimization of these syntheses
typically involves trial and error and this chemistry often is
referred to as “shake and bake.” One approach to dealing with
this kind of challenge 1s to utilize schemes modeled after
biological systems. By using processes observed in evolution, a
robust algorithm can be developed for process optimization.
This 1s called a genetic algorithm. In implementation of a
genetic algorithm (GA) multiple “generations” of experiments
are produced to optimize the reaction. This generational data 1s
a representation of the reaction parameter space. By using this
data as a training set, a neural network (NN) will be produced
that can predict the reaction outcome from new reaction
mixtures. Combining stochastic search routines with artificial
intelligence offers an efficient method for improving and
understanding solid-state syntheses.

Introduction

MgSiN, has many attractive properties such as high thermal
conductivity, low dielectric constant, high hardness, high
thermal stability, good oxidation resistance (up to 920°C) and
high electrical resistance at room temperature

Mixed silicon nitrides as have attracted attention in
applications required high thermal conductivity, low dielectric
constants, and good thermal and mechanical stability. the Of
these mixed nitrides, MgSIN, has been compacted to get a
thermal conductivity up comparable to optimized Al O, with
significant improvements 1n mechanical and chemical stability.
A low cost route to MgSIN, from silicon dioxide would facilitate
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production of electrical insulators in power generation and
transmission..

MgSiN, was first prepared from Mg_S1 or a mixture of Mg N,
and Si,N .> This was achieved by heating the reagent powders in
nitrogen to 1200 "C for several hours. These approaches require
significant inputs of energy to obtain the desired phase. A simple
thermally 1nitiated synthesis from silicon dioxide and metal
nitrides would greatly reduce production costs. Previous work
fond that MgSiN, could be produced by rapidly heating mixtures
of S10, and Mg N.. However, significant reduction in yield was
observed due to the formation os magnesium silicates. It was
hypothesized that additions of alkali metal and alkaline earth
metal nitrides could facilitate the formation of soluble silicates
and MgSiN, with enhanced crystallinity. To that end a series of
experiments were performed to stochastically optimize the
crystallinity of the MgSIN, phase realized.

Solid State Chemical Reaction
xSi0O, + yMg;N,, + zLi,N + wCa,N,-> MgSiN, + byproduct

@ define the parameter space

x € [1,5] in increments of 0.1
v,z,w € [0,5] in increments of (3 1

stochastic
approach

combinatorial
approach

Perform select
reactions based
on an optimization
scheme.

Perform every
reaction.

5 million reactions!
to explore the parameter spage
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If we take a look at these graphs of the powdered
experiments, each graph represents different ratio
compounds and taking account of the peaks, normally
we get a single value optimizer for the benefit of
finding the most optimized ratio of compounds. This
makes 1t very inefficient in the long run because we
don’t get enough values to analyze the experiment as a
whole, and this 1s where machine learning comes nto
play by taking and analyzing all the other values 1n
order to gain a more refined optimized crystallized
compound ratio. By finding this refined crystallized
structure, 1t allows us to optimize the heat dissipation
withing the final compound and ultimately apply it to
final production. Because of the efficiency in almost all
aspects of machine learning, leading energy
corporations are able to apply this to everyday
manufacturing and processes.
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