Applying hyperbolic functions to quantum tunneling and electromagnetic wave problems in physics and engineering (Lecture 1)

Dr. Thomas J. Brueckner
Department of Physics, UCF
Jan. 28, 2008
What our goal is this afternoon

Penetrate material with electromagnetic waves that reshape into hyperbolic functions.

Ch. 2 in Applications of Calculus II
What are we talking about?
What are we talking about?

Weird…but handy in physics!

cosh

sinh
Recall: Euler’s formula...

We need this today!

\[e^{iz} = \cos(z) + i \sin(z) \]

\[\cos(z) = \frac{1}{2} \left(e^{iz} + e^{-iz} \right) \]

\[\sin(z) = \frac{1}{2} \left(e^{iz} - e^{-iz} \right) \]
Modify for today’s topic

Mutatis mutandam…

\[
\cosh(z) = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)
\]

\[
\sinh(z) = \frac{1}{2} \left(e^{iz} - e^{-iz} \right)
\]
Let’s do some warmups

- Using I-Clicker
- Building on Prof. Self’s talk two Monday’s ago
- Pointing toward our objective for today: penetrating radiation.
What we are talking about

Each graphed over \([-1, 2]\) for each

\[\cos(kx), \sin(kx) \]

\[\cosh(kx), \sinh(kx) \]

\[\exp(kx), \exp(-kx) \]

\(k = 2.7 \) for each
Here we go. Let’s look at derivatives.

\[
\frac{d}{dt} \cos(\omega t) = -\omega \sin(\omega t) \quad \frac{d}{dt} \sin(\omega t) = \omega \cos(\omega t)
\]

In general: after two diffs you get back to same function,
...but with an extra factor of \(-\omega^2\).

\[
\frac{d^2}{dt^2} \cos(\omega t) = -\omega^2 \cos(\omega t) \quad \frac{d^2}{dt^2} \sin(\omega t) = -\omega^2 \sin(\omega t)
\]
General derivatives relationships here:

\[
\frac{d^2}{dt^2} \left[f(\omega t) \right] = -\omega^2 f(\omega t)
\]

In general: after two diff’s you get back to same function, …but with an extra factor of \(-\omega^2\). No sweat with \(-\omega^2\).

\[
\frac{d^2}{dt^2} \left[f(\omega t) \right] + \omega^2 f(\omega t) = 0
\]
No sweat because...

1. That kind of derivative relationship is needed in spring systems, e.g.,
 ✓ Oscillators
 ✓ Vibrations

2. $F = -kx$ in springs

3. $F = ma$...as always

4. $a = \text{second deriv. of } x$!
Brainiac iClicker question coming…

\[m \ a = -k \ x \]

\[m \ \frac{d^2}{dt^2} (x[t]) = -k \ x(t) \]
Onward to radiation

1. The relationship for radiation involves the electric field (E) and magnetic field (B) in vacuum.

\[E'' = \frac{1}{c^2} \frac{d^2}{dt^2} E \]

2. They are coupled.
3. In space-time.
4. With second derivative in space and in time.
5. Wiggles that move.
Spacetime implications

6. Sines and cosines of time and space
7. Sin(kx ± \omega t)
8. Cos(kx ± \omega t)
9. Kosher \omega and k, if…

\[
\frac{d^2}{dt^2} E = -\omega^2 E
\]

\[
E'' = \frac{1}{c^2} \frac{d^2}{dt^2} E
\]

\[
E'' = -k^2 E
\]
Another brainiac question coming…

\[E'' = -k^2 E \]

\[\frac{d^2}{dt^2} E = -\omega^2 E \]
What is this physical relationship to c?

A. Dispersion relation (fancy terminology)

B. Refraction of light (transmission)
 ✓ E.g., prisms disperse the colors of sunlight

C. Absorption of light
 ✓ E.g., Superman, lead absorbs x-rays.

$$c^2 = \frac{\omega^2}{k^2}$$
Penetrating a material with radiation

1. Inside material, the physics changes.
2. Light moves more slowly.
3. Energy is absorbed from E and B.
4. Heat flows, outer surfaces cool off.
5. New spatial and temporal derivatives for E and B fields.

» sine, cosine = NO GO!
Now a new derivatives relation must hold.

\[E'' = \frac{1}{c^2} \frac{d^2}{dt^2} E \]

6. The old derivatives relationship changes, i.e., for \(E_z \)

\[E''_z - h^2 E_z = 0 \]

\[E''_z = +h^2 E_z \]

7. New deriv. rel. means new functions do the work.

8. Hyperbolic functions, \(\cosh(u) \) and \(\sinh(u) \).